A Case for the Hyperextension

In many gyms, the hyperextension has a bit of a therapeutic image. If you do this exercise, it is because your physical therapist has advised you to. But real members of the iron tribe who do not need a physiotherapist, of course, do not do the hyperextension. They are going to deadlift. Yes right? Thought wrong, Norwegian sports scientists discovered.

Strength Training works better than Cardio for fat loss

Men who do strength training keep their fat percentage lower in the long term than men who run, cycle or do other aerobic exercise. Epidemiologists at the University of Harvard came to this conclusion after following 10,500 men for 12 years.

Intense Workouts 2xWeek Reduce Burnout from Office Work

Employees, freelance workers and entrepreneurs are less likely to succumb to a burnout if they do an intensive training session twice a week. Psychologists at the University of New England in Australia discovered that both strength training and cardio training reduce the chances of having a burnout.

Hack your Endurance with Rhodiola & Ginkgo

Rhodiola and ginkgo combination boosts endurance (no training required)

Supplementation with extracts of Ginkgo biloba and Rhodiola crenulata increases the stamina of young men. This is shown in a human study published in 2009 in the Chinese Journal of Integrative Medicine.

Study
The researchers, at the University of Hong Kong, divided 67 young men into 2 groups. For 7 weeks, they gave the men in one group placebo capsules and the men in the other group capsules containing extracts of Ginkgo biloba and Rhodiola crenulata in a ratio of 1: 9.

The men took 4 capsules each day, each containing 270 milligrams of extract mixture. They took 2 capsules with breakfast and 2 capsules with dinner.

Results
The supplement increased the men's stamina. The subjects in the experimental group managed to cycle longer, and that may have been due to the increase in their bodies' ability to absorb oxygen. [VO2max]

rhodiola-rosea-ginkgo-biloba-enduranc3
rhodiola-rosea-ginkgo-biloba-endurance.gif

Supplementation did not affect the test subjects' testosterone levels, but it did prevent cortisol levels from rising after exercise. That may mean that the men recovered faster.

Conclusion
"The present findings have provided evidence supporting the use of Rhodiola crenulata and Ginkgo biloba combined supplement for improving the endurance performance by increasing oxygen consumption and protecting against fatigue", summarize the researchers.

According to Russian animal study, extracts from both plants improve endurance, albeit in different ways. [Bull Exp Biol Med. 2003 Dec;136(6):585-7.]

Women and Men respond similarly to strength trianing

Women's upper body muscles respond to strength training just as well as men's

The extent to which women can strengthen the muscles in their upper body through strength training is the same as the extent to which men can do this. However, this does not imply that women can easily reach the strength level of men who work out.

Study
In 2016, Brazilian sports scientist Paulo Gentil published a study in which he got 44 male and 47 female students to do a full-body workout twice a week for 10 weeks.

The workout consisted of basic exercises such as leg press, leg curl, chest press and lat pulldown. The subjects did 3 sets of each exercise with a weight that allowed for 8-12 repetitions. The subjects rested for 2 minutes between sets.

Before and after the training period, the researchers determined the torque that the test subjects could develop during a biceps curl. 'Torque' is what athletes in the gym often refer to as 'force'.

Results
In absolute terms, the men gained more strength than the women [left in the figure below]. But in relative terms, in terms of progression over the strength already present before the training program began, the progression of the men was similar to that of the women [bottom right].

strength-training-women-men-upper-body.gif

Conclusion
"Despite the physiological and hormonal differences between sexes, women demonstrated the same relative strength gains compared to men [...]", writes Gentil.

"It appears there is presently no evidence of a need to design different resistance training protocols to men and women. [...] One should not expect to find limitations in upper body strength development in women."


The Importance of Strength Training in Combat Sports

The Importance of Strength Training in Combat Sports

Strength is an attribute that cannot be significantly improved through the practice of participating in Combat Sports, therefore it makes strength training a wise investment, particularly if you want to win. The purpose of increasing strength is to develop physical capacities necessary to handle the unpredictable nature and stressors of the sport. Athletes need to be prepared for all aspects of physical combat including punching, kicking, takedowns, takedown defense, arm bars, guillotine, grappling, and clinching, not to mention proper conditioning and muscle endurance. A simpler way to say it would be, to achieve victory an athlete needs to be faster, more explosive and last longer than their opponent. Also, let me make it clear before I go any further, strength does not replace technique — wrestlers should prioritize wrestling, just as martial artists should ultimately work to perfect their discipline — but improving strength will transfer to better technical performance (e.g., technique) on the mat or in the cage.

Deep Thoughts, Even Deeper Squats

Are deep squats bad for my knees? The prevailing wisdom on this topic would lead you to believe that squatting below parallel will cause injury to your knees by placing an unusual strain on your ligaments leaving the knee unstable and prone to injury. This theory was brought to light in the late 1950’s when Dr. Karl Klein was trying to understand why there happened to be a rise in the number of colligate football players sustaining serious knee injuries. He suspected it was due to the use of full ROM squats in university strength programs so he crafted a special instrument to analyze the knees of several of these football players who frequently performed deep squats.

In 1961, Dr. Klein released his findings, which recommended the squat be limited to a parallel depth. His reasoning stated that the use of deep squatting is detrimental to athletic development and “should be discouraged from the standpoint of its debilitative effect on the ligamental structures of the knee.” The following year, Dr. Klein’s findings were picked up by Sports Illustrated which became the catalyst to spread the fear of deep squatting. Next the American Medical Association weighed in on the topic cautioning against the use of deep squatting. It went so far as the Marine Corps even eliminated the squat-jumper exercise from its physical conditioning programs.

There has been a lot of pushback on this theory ever since its inception almost 60 years ago. Dr. Klein’s findings have failed clinical replication, even with the use of his special instrument. Fortunately, now in the present day we can use the advancement in exercise science and biomechanics research to settle this debate once and for all.

When we squat, our knee sustains two inversely related forces – shear and compressive – meaning that when the knee flexes during the squat, compressive forces increase while shear forces decrease. These shear forces are measured by how much our bones – femur and tibia – want to slide over one another in opposite directions. These forces challenge the small ligaments of ACL and PCL to hold our knees together and limited excessive forward and backward movement. In contrast, compressive force is determined by the amount of pressure the body is pushing on two parts. There are two areas that sustain this compressive force; 1) the meniscus as it absorbs the opposing stress between the tibia and the femur, and 2) the backside of the patella (kneecap) as pressure increases through the descent of a squat.

Science tells us that the ligaments inside our knees are under very little stress at the bottom of a squat due to the mechanics of this inverse relationship. Harmful shear forces are dramatically decreased due to an increase in compression and it seems that the deeper we squat the safer it is on the ligaments of the knee. The most well-known ligament, the ACL (Anterior Cruciate Ligament), is under little stress in the bottom of a squat.  In fact the stress to the ACL during a squat is actually highest during the first four inches of the squat decent (around 15-30° of knee flexion)* and continues to decrease the deeper the descent. The lesser known ligament, the PCL (Posterior Cruciate Ligament) sustains it’s max forces just above a parallel squat (around 90° of knee flexion).

It seems that Dr. Klein’s detrimental claims of the deep squat stretching out our ligaments, ultimately leaving them unstable is but a myth that just wont die. Science has since shown repeatedly that squatting deep may have a protective effect on our knees by increasing stability. In 1986, researchers compared knee stability among powerlifters, basketball players and runners. After a heavy squat workout, the powerlifters actually had more stability in their knees than did the basketball players did.  In 1989, another group of researchers were able to show that competitive weightlifters and powerlifters had knee ligaments that were less lax than those who never squatted. The prevailing research continues to show that the deep squat is a sage exercise to include in a healthy athlete’s training program.

-Adapted from The Squat Bible by Aaron Horschig

LADDER DRILLS DO NOT INCREASE SPORT PERFORMANCE

 

Good luck being able to see a defender coming while you are staring at your superb footwork!

Ladder drills have become hailed as a top training tool for producing athleticism, but do the claims about creating faster feet really equal more speed and greater agility?

Ladder training typically involves following a set footwork pattern – moving the feet inside and outside the rungs of a ladder that is laid flat on the ground – where the goal becomes to increase speed while maintaining the pattern. These drills have become hailed as a top tool for producing athleticism, from youth leagues to the pros, yet the science of creating faster feet does not equal more speed or greater agility come game time. In fact, drills using speed and agility ladders under the guise of increasing on-field performance is counterproductive.

Before we dive in, let’s all agree that…

  • Everything done in a gym should be seen as physical preparation for sports not performed in the gym. Any attempt to correlate athletic performance to any drill is futile due to the chaotic nature of sports and the processing of multiple variables in any instant of gameplay.

  • For any training modality to work effectively, it has to replicate or produce similar benefits of the end goal. This means the given exercise or tool used should closely replicate the speed, force application, change of direction, as well as the metabolic and neural demands of the activity. If it doesn’t, then it will not produce the desired results.

  • And when it comes to youth or beginner, everything works in the trainers favor to improve all aspects of strength, endurance, quickness, etc. (However, it could be argued that doing body weight squats would have the same benefit.) Additionally, ladders can be a great tool for developing neuromuscular coordination and provide an excellent multi-planar dynamic warm-up at any sporting level.

That said, this article is aimed at addressing why ladder drills do not increase athleticism or on-field performance by improving speed and agility.  It should be seen that producing speed is more than the ability to move your feet fast, just as agility is more than the proficiency of learning footwork patterns. If we think about the ground as a springboard from which we draw speed, it is not how fast you can dance over it, but how much force goes into it, and how an athlete overcomes inertia to generate a powerful movement; then we can see how ladder drills do not increase performance in your sport of choice, unless it happens to be salsa dancing. Therefore we need to have a better understanding of speed and agility:

Speed is defined by the following equation: (Stride Length x Stride Frequency) / Time. Research has shown that the fastest athletes are not faster because they take more strides, but because they cover more ground with each stride. This is possible because they put more force into the ground enabling them to cover a given distance in a shorter amount of time. It is a matter of power generation; driving the foot against the ground, enables the extensor mechanism from the hip extensors (the all-powerful glutes and hamstrings), the knee extensors (quadriceps), and the plantar flexors of the ankle to propel the body in a forward motion. When you apply greater force into the ground with a forward lean and at a horizontal angle in a smaller time, you generate more speed. As that force increases there is an inverse relationship between ground contact and distance covered. Taking steps that are more powerful than your competitor, will ultimately allow you to outrun them, at least in a straight line. An example would be how Usain Bolt can complete a 100 meter sprint with a stride count of 42, while everyone else in the field managed to 46-48; his stride length was much higher (force) but his stride frequency was about the same.

21 Tips to Be Healthier, Leaner & Stronger EBOOK
$5.00

The default in nature is health, so why are you fat, sick and broken? Probably because you wear your constant stress, long hours in the office, sleep deprivation and ability to eat like a garbage disposal as a badge of honor! If this is you, you need this book! It contains 21 tips for you to improve your life for the better. Become healthier, leaner and stronger today!

Add To Cart

Agility is the ability to decelerate one’s momentum, stop, overcome inertia and accelerate one’s body mass in another direction in as little time as possible. Essentially, if you’re running straight forward and a defender jumps out of the bushes, you want to be able to create a powerful movement that allows you to turn or change direction in a split second. The most effective way to change direction involves having the legs move outside of vertical alignment of the center of mass, and driving them into the ground at as horizontal of an angle as possible to create a strong impulse against the pull of momentum to continue in another direction. From a physics perspective, momentum along with impulse and inertia, are critical components of agility. The ability to decelerate and stop one’s momentum in as short distance/period of time as possible requires great amount of relative unilateral strength and power, particularly in the extensor mechanism musculature of the lower extremities. Equally important, impulse can be found in the period of time where switching from eccentric action (deceleration) to concentric action (acceleration) occurs. Thus, the quicker an athlete can decelerate, overcome inertia, shift impulse momentum and propel in another direction the more agile an athlete is seen to be.

Given the above description on speed and agility it should be seen that performance is inherently predicated on the application of speed in concert with the impulse of agility. The ability to generate forward momentum/force is equally as important as being able to act and react to the chaotic unpredictability of an outside stimulus. With this understanding of performance we can see that any drill that is directed toward constricting an athlete to tip-toe through a series of 15 x 15 inch boxes without posing a challenge to displacement of an athlete’s center of mass or an effort in creating forward momentum through the development of proper mechanics will only serve as a deterrent to the claims of improving performance.

There is very little to gain with the incorporation of ladder drills, as such drills are merely displays of an already present athleticism. Natural athletes learn skills quickly and replicate movement efficiently within a very short period. Within a few weeks of practicing with a ladder, an athlete can become very proficient in the drill, yet when it comes to performing in the game there is very little transfer. Why? Because ladder drills are learned patterns without the influence of an outside stimulus, like a ball or a defender coming at you, and all the hours and effort spent learning how to tip-toe properly while staring at the ground is only working against the athlete who needs to see and react. When athletes who use these drills as a main focus are required to respond in a chaotic environment like a game, their own muscle memory could work against them—tip-toeing gracefully around a defender instead of creating a quick and powerful movement, only to get blasted by a guy the athlete didn’t see because they’ve been trained to staring at the ground. Simply put, fast feet do nothing if you don’t go anywhere. Getting better at predetermined movement patterns is not indication of on-field performance as there is very little transfer from a learned movement to a chaotic gametime environment. In the end, there is no way to practice the perfect pattern for football, soccer, hockey, ultimate frisbee, or any other sport for that matter. It is a requirement to react powerfully and quickly, and there certainly isn’t any benefit to staring at the ground.

Instead of wasting precious time on ladder drills, a strong focus on strength and power development with emphasis on both bilateral and unilateral movements are the best approach, not only for performance but injury prevention as well. An example would be the following:

  • Bilateral Strength – Squats and Deadlift variations

  • Bilateral Power – Olympic lifts, Box Jumps and Depth Jumps

  • Unilateral Strength – Split Squat variations and Step-Ups

  • Unilateral Power – Olympic lifts, Sprints and Penta-Hops

Thinking of the springboard example used earlier, the ground is where we draw speed, how much force we apply to it is the amount of speed we are going to get out of it. Elite-level sprinters can produce over 360 pounds of force per leg when moving at top speed. Good luck tip-toeing your way to those numbers. Force into the ground equals forward motion, this is because speed is a matter of force production and being agile is the ability to react, absorb and overcome inertia, therefore the ability to maintain strength and generate power is the real solution to generating more speed and creating better agility. Once an athlete has corrected any structural imbalances, increased relative strength and reactive/ballistic ability, then and only then is it acceptable to place emphasis on drills utilizing the ladder. However it is important to remember that no drill is a better substitute than having the athlete play their specific sport, as the ladder will never juke one way or try to cross you over.


Recommended Reading: