strength training

The Importance of Strength Training in Combat Sports

The Importance of Strength Training in Combat Sports

Strength is an attribute that cannot be significantly improved through the practice of participating in Combat Sports, therefore it makes strength training a wise investment, particularly if you want to win. The purpose of increasing strength is to develop physical capacities necessary to handle the unpredictable nature and stressors of the sport. Athletes need to be prepared for all aspects of physical combat including punching, kicking, takedowns, takedown defense, arm bars, guillotine, grappling, and clinching, not to mention proper conditioning and muscle endurance. A simpler way to say it would be, to achieve victory an athlete needs to be faster, more explosive and last longer than their opponent. Also, let me make it clear before I go any further, strength does not replace technique — wrestlers should prioritize wrestling, just as martial artists should ultimately work to perfect their discipline — but improving strength will transfer to better technical performance (e.g., technique) on the mat or in the cage.

"Eat Less & Move More" is Bad Advice

weight-loss-strength-magnesium.jpg

The conventional advice given to those who are tying to obtain a goal of weight-loss is to “eat less and move more.” This operates under the calories in, calories out model whereby you need to exercise off more calories than you have coming in. Sounds great in theory, but I am here to tell you that a calorie is not a calorie and exercise doesn’t really burn that many to begin with.

Eat less…

During a simple calorie restricted diet the weight lost is usually comprised of 2/3 fat and 1/3 muscle. So, if you lose 15 pounds, approximately 10 pounds would come from fat and the other 5 pounds from muscle. The loss of muscle is unfortunate and in a perfect world (e.g., prioritizing adequate amounts protein in the diet) would not be as significant, however if you are following the “eat less and move more” mantra this is pretty much to be expected. 

Take a look at this example: a 200 pound woman with 30% body fat (200 x 30% = 60 pounds of fat mass), after losing 15 pounds would weigh 185 pound with 50 pounds of fat mass. She lost 10 pounds of fat and her total body fat was reduce from 30% to 27%. 

While a total loss of 15 pounds is worth bragging about, as per the above example, the loss in muscle mass will cause a reduced metabolic rate, slowing down continued weight loss. In other words, because she burned off 5 pounds of muscle it will be harder to continue losing weight as easily as it would be if she hadn’t lost 5 pounds of muscle. Why? Muscle is an expensive tissue to maintain, it consumes nearly 40% of your body’s resting metabolism. To combat the negative effects of reduced muscle mass, while seeking a goal of body recomposition, it is important to increase total protein intake as to not hinder future progress,

Dietary protein requirements are largely affected by the amount of muscle mass you carry around  as well as your total calorie intake. There is an inverse relationship between calories and protein, whereby increasing calorie intake reduces dietary protein requirements, while reducing calorie intake increases dietary protein intake. Applying this to the above situation, our 200 pound woman would make better long-term progress from an increased total protein intake of say 150-180 grams: 180 grams of protein x 4kcal/g = 720 kilocalories from protein; 720 calories is 36% on a 2000 kilocalorie diet and is 48% on a 1500 kilocalorie diet (this is purely for illustrative purposes as I am not a proponent of counting calories). Thus, the absolute and relative amounts of protein in the diet are increased. By doing this, muscle mass is much more likely to be retained, improving long-term weight loss and body recomposition goals. This is clearly supported by clinical trails; high protein diets consistently result in more successful long-term diets…

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213385/

Move more…

Exercise is definitely beneficial for optimal health and longevity as it increases overall fitness, improves cardiovascular health, promotes a positive well-being and if done properly can increase muscle mass which can pave the way for a long life full of vitality. However, one thing exercise does not do is cause weight-loss. When someone starts an exercise regimen without a specific dietary intervention, long-term weight loss fails to occur in the majority of people because the calorie deficit produced from exercising is offset by the increased hunger and subsequent food intake. In other words, energy intake will rise to meet the level of energy expenditure. Another way “eat less and move more” falls short of optimal advice.

This is not to say that exercise is worthless when it comes to weight-loss because exercise has the ability to do one thing that dietary intervention cannot: it builds muscle. Learning from the above mentioned example, it is our ability to maintain muscle that creates a beneficial atmosphere around weight-loss because muscle is metabolically active — the more we have, the greater amount of energy we must expend to keep it, even at rest.

For conventional purposes, exercise can be broken down into two categories; aerobic and anaerobic. Aerobic training revolves around extended periods of heavy breathing which makes the heart work and improves cardiovascular fitness, generally at the expense of precious muscle. Examples are running and cycling. Anaerobic training is performed at a much higher intensity than aerobic exercise, albeit much shorter bouts with plenty of rest in between which promotes muscle growth and increase strength. Examples are sprinting and weight lifting/strength training.

While both forms of exercise will increase energy expenditure, the amount of calories expended when not exercising is much greater than those spent when exercising. Time spent not exercising is roughly 45 times greater than time spent exercising (60 minutes at the gym vs. 23 hours not at the gym). Office work, sitting in traffic, grocery shopping, cooking, watching television, and sleeping are all lower intensity activities than any exercise; having a substantial amount of your body composition comprised of muscle will allow you to utilize your calories for the health of that expensive tissue and not have it stored as fat. Therefore, it is important to prioritize your exercise regimen accordingly.

Anaerobic training, specifically strength training increases skeletal muscle mass. This has a positive affect on our metabolic rate allowing us to use energy more efficiently (e.g., burn fat), in addition to improving overall strength, coordination and quality of life. Having stronger muscles makes all activities easier, and thus of lower intensity. And lower intensity favors fat burning as a primary fuel source. In other words, to optimize the effect of exercise on fat burning, get in the weight room.


A better way to think about getting in shape would be to “Eat and Train.” This seems to be a much more productive piece of advice as I have hopefully illustrated above. The idea of “eat less and move more” is aesthetic whereas the other is functional. The former may not have a clear goal, but the latter always does.

A comment on Flat Feet:

When the arches of the feet collapse, a lot of bad things happen. First, consider that the arch of the foot is supposed to flex and absorb shock. If the arch is flat, the foot lacks shock absorbency, and stress is transferred to the knees, hips, and lower back. This is why many of the advertisements for orthotics claim that they can resolve back pain.

With fallen arches, the bones of the ankle are not optimally aligned with the foot, increasing the risk of ankle injuries. According to the National Institute of Arthritis and Musculoskeletal and Skin Diseases, approximately one million people in the US are treated for ankle injuries every year. It’s also estimated that athletes who injure an ankle are five times more likely to injure that ankle again.

Fallen arches also cause the bones of both the upper legs and lower legs to internally rotate. This rotation increases stress on the ACL. The ACL is a ligament that connects the upper and lower leg bones and provides stability to the knee, making the ACL critical for dynamic movements. Approximately 300,000 ACL injuries occur annually in the US, and the risk of injury is greater to athletes and women. Also consider that only 30 percent of ACL injuries are a result of direct contact, which suggests that an important step to preventing ACL injuries is to address the structure and function of the foot.

Another consequence of fallen arches is that the inward rotation of the upper legs increases the arch in the lower back, a condition technically referred to as lumbar hyperlordosis. Lumber hyperlordosis reduces the ability of the spine to absorb shock. The result is an increased risk of back injury and pain.

The most common method of correcting flat feet is orthotics. Orthotics don’t permanently correct fallen arches – they only work while the user is wearing them. Also, the pressure of the orthotic on the arch can also cause the arch to become weaker.

Solutions include corrective exercises to strengthen muscles that support the arch. One such muscle is the extensor hallucis longus, which creates lateral tension on the foot and also strengthens and stretches the two major calf muscles (gastrocnemius and soleus).

Simpleton Guide to Poliquin Training

Part I
Sometimes, when I'm talking to Coach Poliquin about training methodologies, muscle fiber ratios, and all the assorted high-tech, laboratory aspects of weight training, my eyes start to glaze over?not because I'm bored or anything?but because he has lost me; lost me as surely as if he had driven me out to the desert in the back of his four-wheel-drive Jeep of knowledge, kicked me out naked into the midst of scorpions, rattlers, and cacti without so much as a bottle of Evian water, and left me to flounder out under the searing sun where I start to slowly bake and fricassee.

He'll continue expounding on the intricacies of what he knows better than any one alive, and I'll find myself playing little games to make him think we're still sharing the same planet: "Yes Charles, yes, it's so clear?why didn't I see it before?" Meanwhile, I'm staring at his nose, or fantasizing about that blonde I saw on the beach the other day, the one with that metallic thong that split her declivities so deftly in two as she bounded toward the surf, her bottom as brown as a berry and just as juicy... "Yes Charles, yes, don't stop, don't stop!"

Don't get me wrong; I'm not exactly a lightweight when it comes to the science of weight training. I've read more than my share of studies, articles, and books, in addition to having years and years of practical experience. And, I've played Sherman to Charles Poliquin's Peabody for practically longer than anyone else. I'm sort of a Poliquin clone; a juvenile, ill-formed, way-down-on-the-evolutionary-scale clone, but a clone nonetheless. Still, I'll never know everything Charles knows, regardless of how much I tag along with him like some sort of loyal hound dog.

The point of all this is that I can now formulate my own, Poliquin-esque workout routines without too much wailing and gnashing of teeth. What I've done is taken seven of his principles and committed them to memory, so much so that I can't do a single exercise without taking them into consideration. It's kind of like that best-selling business book, Seven Habits of Highly Effective People, but instead, I prefer the less elegant, more humble title, "A Simpleton's Guide to Charles Poliquin's Training Principles".

If you learn these seven principles and apply them to your workout routines, you'll have the next best thing to getting Charles to design your own, individualized programs. What's more, you'll more than likely experience more progress in your training in a short period than you have in the previous five years. Here, in a nutshell, are the seven principles I've adopted (I also gave them my own descriptive names):


The Borg Principle

Anybody who's ever watched the newer versions of "Star Trek" knows about the Borg. They're the bad-ass creatures who can't be beaten using conventional methods. Blast them or their ship with phasers, and they adapt. The only way to keep them off balance is to set your weapons on a constantly shifting frequency so they can't adapt. 

Well, your body is the Borg. It's designed to adapt. When you keep doing the same exercises in the same order, for the same amount of reps, using the same hand grip or foot stance, the body adapts. In effect, the nervous system becomes ""hardwired" to that particular routine and consequently, fewer muscle fibers are recruited, less energy is used, and fewer demands in general are made on the body. You become an expert at that routine, and after a surprisingly short time, you stop making progress.

If, however, you keep shaking things up, "changing the frequency," so to speak, the nervous system does not adapt. Instead, what happens is that the body?the muscles?grow stronger and bigger to survive the onslaught of your attack. Research (by Poliquin and others) shows that, in most cases, the body begins to adapt after having performed a particular routine 6 times. After that, it's time to shake things up again. 

Yes, to the Borg, resistance if futile, but in weight training, resistance to becoming stale is mandatory.


The Principle of Shifting Rep Ranges

Most trainers are hopelessly mired in the old 8-10 rep range scheme. It's as automatic for them as putting two spoonfuls of sugar in their morning coffee; getting a monthly haircut from Rudy, the gay stylist; or watching Dawson's Creek on Tuesdays and wondering what that Joey chick is going to look like when she gets a little bit older. It's largely habit. True, there's a lot of evidence that doing midrange reps is maybe the best compromise between rep ranges designed to build strength (between, say, 3 and 5) and rep ranges designed to build endurance (anything above 12 or so). However, to maximize results, you should work your muscles in all 3 rep ranges.

Muscle fibers are "typed" according to their oxidative capacities and how fast they fatigue. Historically, fast-twitch fibers (the ones best suited for growth) are worked by a combination of lower-rep, lower set routines. Fine. Except that muscles are also made up of slow-twitch fibers. You can't very well ignore them if you want to maximize gains. 

Therefore, you should juggle low-rep training (from 4 to 6 reps), intermediate-rep training (8-10), and high-rep training (12-15, or even 15-18) to make the best progress.


The II-B or Not II-B Principle

We just got done talking about fiber types. Well, true muscle physiology types (the kind that wear lab coats with the sleeves torn off) refer to these fibers using cute little alphanumeric terms, like II-A or II-B. These numbers refer to their oxidative capacity. Now, type II-B fibers are generally known as fast-twitch fibers and are the ones called on to do very heavy lifting. When you experience strength failure, much of it's due to the fact that these type II-B fibers have petered out?they just don't have the endurance of the other muscle fibers. They're like the fat truck driver who lives down the street; huge SOB, real strong, but can't run more than 10 feet without kissing the pavement. 

After these fibers are fatigued, it's hard to engage them fully in subsequent exercises. However, the other fibers, the type II-A guys, will still be fresh, and they're best stimulated with reps of between ten and twelve.

The point here is that you should do your heavy weight, low-rep movements first in the workout. Then, after those fibers are baked, go on to your higher-rep movements.


The Rest Principle

Somewhere along the way, taking short breaks between sets got confused as "intensity". If, after all, you're breathing heavy like a high school kid at a Tracy Lord film festival, you must be working intensely, right? Wrong, Viagra breath. In weight lifting, intensity refers to how close the weight you're using is to your one-rep maximum. If I lift 200 pounds ten times, regardless of how much I huff and puff, I'm not engaging in a high-intensity set. If, however, I push 300 pounds up only 3 times, my intensity level is very high.

With that in mind, let me say that people tend to rush between heavy sets in order to maintain a high heart rate. Heart rate has nothing to do with your goal here. If you want aerobic capacity, run 10-miles a day and turn into one of those pairs of lungs with some sinew attached that you see whipping along the parkway every morning wearing T-shirts that say something like, "Greater Orlando 225K Grapefruit Extravaganza Race".

The more intense the set, the more rest is needed between sets to allow for neural recuperation. If you don't rest long enough between intense sets, it's a safe bet that your lactate levels will still be high and that they'll interfere with your performance on the next set.

Typically, if you're working heavy, you should rest between two and three minutes in-between sets. On less intense sets, you can rest anywhere from 45 seconds to 90 seconds.


The Time-Under-Tension Principle

Muscle growing isn't just about reps and rest periods. It all comes down to something called "time under tension". In some circles, time-under-tension refers to the amount of time you spend tailgating that Ford Pinto that's doing about 45 in the fast lane. It also refers to the time your muscles are actually working and weight, sets, and reps all play a part in the equation. For instance, if you do a set of 10 reps, but you pistoned them up and down like the pelvic thrusts of one of those horny baboons in a National Geographic special, your total time under tension was about two seconds. Muscle is not going to grow when your time under tension is inordinately low (see the next principle for more info on "time under tension").

Typically, and depending largely on your muscle fiber ratio (some people have more fast-twitch fibers than slow or vice versa), your time under tension should be anywhere from 30 seconds to about 70. Any more or any less is counterproductive over the long run. (Determining your exact muscle fiber make-up is probably a little more complicated than we want to get into here in this article).

As you progress from one set to another and you tire, you have one of two choices: reduce the weight, or reduce the number of reps. Given that choice, you should always reduce the weight and keep the rep range the same or roughly the same. In other words, if you just did 8 reps at 200, you'll need to reduce the weight about 4 or 5% on the next set in order to do 8 reps again.


The Change the Beat Around Principle

In the previous principle, we talked about time under tension and we mentioned the wisdom of keeping the duration of a set somewhere in the 30 to 70 second range. How do you do that without doing 30 to 70 reps? The answer is something called tempo. For instance, if I'm doing sets of dumbbell bench presses for sets of 4 to 6 reps, my time under tension is going to be something like 15 seconds if I do them at "normal" speed. However, if I slow them down, particularly on the eccentric, or lowering part of the movement, I'll increase time under tension.

Whenever you look at a Poliquin workout sheet, you'll see numbers that look like 302, or 501, or something similar. They do not refer to different styles of Levi's jeans. Instead, they refer to tempo, and the first number indicates how many seconds you should take to perform the eccentric portion of that particular lift. For instance, a "5" means you should take a count of five to lower the weight. The next number refers to the pause taken between the eccentric and the concentric portion of the movement, while the last number refers to how long it should take you to raise the weight.

Okay, so what this means is that if you're working in a 4-6 rep range, you have to adjust the tempo in order for that set's time under tension to reach at least 30 seconds. Along the same lines, if you're working in the 8-10 rep range, the tempo should be a little quicker so that you won't exceed the 30 to 70 second time-under-tension frame.


The Yin and Yang Principle

Muscle builders always talk about the endocrine system; the muscular system; or even the cardiovascular system. But, they hardly ever talk about the neurological system and that's a big mistake. Consequently, neural recuperation is ignored.

Ever wonder why 99 out of a 100 trainees do multiple sets of a particular exercise in succession? For instance, they'll do one set of bench press, followed by another set of bench press, followed by another set of bench press. In between, they'll pretend to pull a loose thread on their toe-jammy socks while sneaking a peak at Ms. Hooters while she's doing dumbbell flyes. This supposedly allows the athlete to recuperate in-between sets.

Well, amazingly, research has shown that you'll achieve better recuperation by performing a set for an antagonistic body part in-between sets. For instance, if you do a set of dumbbell bench presses, do a set for your lats in-between and then go back to your next set of dumbbell bench presses. You'll experience less of a drop in strength in between sets. No one is sure why, but you can bet it has to do with the neurological system.


Some of you who are new to Charles' workouts may have noticed that he often labels his exercises as "A1" and "A2" or "B1" and "B2". This refers to the order of exercises. "A1" is usually the first exercise for a particular set for a particular body part, while "A2" refers to the second exercise and that exercise is almost always for a dissimilar body part. After completing A2, the trainee rests for the predetermined amount of time and then goes back to his second set of A1.

Other examples include doing a set of barbell curls, followed by a set of triceps extensions; or a set of squats followed by a set of leg curls.

There are plenty of other Poliquin Principles, but my feeble brain can only digest so much. It's like buying panties for my wife out one of those big Victoria's Secrets clearance bins: they all look so nice, but I can only fit so many in my wheel barrow. 

Anyhow, these are the ones that I use to formulate my workout programs. Next week, I'll show you how I use them to constantly formulate new, incredibly effective workouts without rupturing too many brain cells.

 

 

 

Part II
In Part I of this article, I carefully picked out seven of Charles Poliquin's principles and tried to make them a little easier to understand. Of course, as I mentioned, picking out only seven was a little like trying to pick my top seven favorite Hanson songs?okay, bad analogy. Trying to pick seven was like trying to choose which seven of my family or friends would get to go into the shelter with me when one of those Hollywood-movie asteroids blows up my town. Should I pick my dear, dear, grandmother, or that girl walking by who I've never met but who has a perfectly glorious rack? Anyhow, I made my choices based partly on cold logic and partly on emotion, picking some that worked particularly well for me or that suited my personality.

Hopefully, I made some of them easier to understand, especially if you're new to Charles Poliquin's ideas. Regardless of how well I explained them, though, they're essentially worthless unless they can be incorporated into a workable routine. 

In the beginning, I practically had to book some time on a Craig Supercomputer to help me figure out a Poliquin workout for myself. I mean, geez, with all the other things I had to factor in like speed of contraction and muscle fiber types, etc., etc., I was lucky if I didn't get confused and mistakenly devise an elaborate tap-dance routine: De Camptown Ladies sing this song, oh da-doo-da-dey?.

Anyhow, I eventually got pretty good at it, but I found that I'm a little too goal-oriented and compulsive and I found that a completely pre-planned workout was causing me too much anxiety. I looked at the whole thing as a checklist and I couldn't relax and enjoy myself until I had methodically gone through the whole thing. It felt too much?like work.

So, I adapted. I devised a system using the Poliquin principles listed above and made a workout that had some structure, but was variable enough to suit my personality.

First, I arranged a seemingly logical split:

Day 1: Chest and Back
Day 2: Biceps and Triceps
Day 3: Off
Day 4: Quads, hams, calves
Day 5: Off*

*I don't work shoulders directly?I know that sounds nuts, but I think that anyone who habitually works chest and back is already getting plenty of shoulder work. My aim is to keep my shoulders healthy so that when I'm eighty, I can still throw lumps of stale bread at the pigeons that congregate around my park bench.

As I mentioned, I don't do well with set-in-stone structure. I need a little leeway to do what I want to do occasionally, or to have another choice or two in case the machine or weight I want is being used by some yutz who's telling his entire life story to his personal trainer in-between sets. 

Therefore, I combine structure and spontaneity. Before I go into the gym, I've mapped out the first exercise (using the appropriate Poliquin Principles) for each body part I'm going to work that day and only the first exercise. As an example, the "written-down" portion of my chest and back workout will look like this:


A1)  Incline Barbell Bench Press Weight Used Sets(4)  Reps(4-6) Tempo(402)  Rest(120secs)
1) 
2) 
3) 
4) 

A2) Wide-Grip Chin-Ups Weight Used** Sets(4) Reps(4-6) Tempo(402) Rest(120secs)
1)
2) 
3) 
4) 
                         

**With chins, I'd strap some additional weight onto my waist.


Again, these are the only two exercises that are set in stone for this particular workout. More on that later, but let's take a look at the parts of this exercise prescription and see which principles they employ:

The exercises themselves: Note the "A1" and "A2" designation? For you Poliquin neophytes, that simply means I'll do one set of the A1 exercise (the incline presses), rest two minutes, and then go on to the A2 exercise (the chins). I'll rest for another two minutes and then go on to the second set of the A2 exercise. This incorporates the "Yin and Yang" principle explained in Part I of this article which, in a nutshell, says that you experience better recuperation when you do another set for the antagonistic body part in-between sets. So, you might consider pairing chest and back; biceps and triceps; and quads and hams.

Reps: Sets of relatively low reps target the type IIB muscle fibers, and these are the fibers that have the least endurance. Therefore, I do these low-rep sets early in the workout while these particular muscle fiber types are still fresh (the "IIB or not IIB" principle). 

Tempo: Note the 402 tempo indicated in my example workout. This tells me that I should take 4 seconds to lower the weight, no pause, followed by a 2-second concentric or lifting phase. By doing these slow, controlled reps, I'll ensure that my time under tension will be close to 30 seconds, which again suits these muscle fibers best (the "time under tension" principle, and the "change the beat around" principle).

Rest: Again, different muscle fiber types respond better to different rest periods, and type IIB fibers?which are being targeted here in my first group of exercises?respond better to longer rest periods. It may be difficult for traditional muscle builders to wait this long between sets, but it's the absolute correct thing to do if you're after additional strength and size.

Now, I'll record my weights and reps achieved for this workout, and I'll continue to do so for the next five workouts. Remember the "Borg Principle," the one that says your body becomes "hard-wired" to a particular routine? Well, it's true, and you really shouldn't do the same exercise or group of exercises more than 6 times in a row. After that sixth workout, I'll pick two new movements for chest and back. For instance, my "A1" movement might even be dips, doing 4 sets of one rep each, with a tempo of 15015 (that's right, 15 seconds on the way up and 15 seconds on the way down). Likewise, my "A2" movement might be close-grip chins for a 15015 tempo. 

You're probably wondering why I record these first two exercises and no others. Well, as mentioned, the completely structured, completely-planned-beforehand workout doesn't work with me, mentally. I find myself thinking about the next set while I'm still doing the current one. But, by keeping careful records of the first movement for each body part, I can determine if my workouts continue to be effective. For instance, if I fail to either increase the weight or the reps on each subsequent workout, I know I'm not hitting it hard enough on the subsequent movements. 

You, however, may prefer a lot of structure. If that's the case, simply write out your entire program beforehand using Chuck's principles. Just make sure you change your program after every 6th workout or so (that's every 6 workouts for that particular body part or parts).

Let me reiterate that the above exercise combo isn't my entire chest and back workout. Hardly. But after this, I free-wheel it, doing a combination of exercises that employ the Poliquin Principles but change constantly from workout to workout. This keeps me amazingly fresh (mentally) and allows me to keep making far more progress than I might have had I stuck to a completely pre-determined workout. 

For instance, after I've done these first two low-rep exercises, I'll want to do some mid-range rep training (approximately 8-10). Consequently, I'll often do two exercises that:

A) Work the muscle slightly differently, i.e., flat-bench dumbbell presses instead of incline barbell presses, and bent-over rows instead of chin-ups.

B) Incorporate a slightly faster tempo. Since I'm doing 8 to 10 reps, I don't want to do incredibly slow reps because that will bring my total time-under-tension beyond the 30-70 second range I've established for myself. Consequently, my tempo will probably be about 202 or somewhere in that range.

C) Require less rest. Since, by doing higher reps, I'm working the fiber types that have greater recuperative abilities, I'll rest only about 60 seconds in-between sets.

Okay, so we've done a few sets in the low-rep range and the middle-rep range. That means that a good portion of your total number of muscle fibers have been recruited and put to work. That leaves your slow-twitch fibers. They've barely broken a sweat and they're laughing at all the low-endurance fibers that are gasping, wheezing, and massaging their bruised sarcomeres. Time to put these high-resistance fibers to work with some high-range rep training.

I've got several options here for doing high-rep sets, but generally, I'll throw out the Yin and Yang principle when I do them. In other words, I'll do the same exercise for three consecutive sets without bouncing back and forth between two exercises for two antagonistic muscle groups. Sure, the Yin and Yang principle is designed to allow for greater recuperation of a muscle groups, but given that you're doing work specifically for muscle fiber types that have great endurance, we can temporarily ignore the Yin and Yang principle during high-rep sets.

For instance, I might do three sets of dumbbell flyes for 12 to 15 (or even 15 to 18) reps each, with only 45 to 60 seconds of rest in-between sets. Then, after I've completed all three sets of flyes, I might do three sets of one-arm dumbbell rows, again doing 12-15 reps (per arm) and taking only 45-60 seconds of rest in-between sets.

There are other options, too. I might, on occasion, do three sets of vertical bench presses (machine), doing a 6,6,6, rep-scheme where I do 6 reps to failure, wait 10 seconds, reduce the weight, do 6 more reps, wait ten seconds again, and reduce the weight and do a final 6 reps. After resting for 45 seconds to 60 seconds, I'd do the next set. In this just-mentioned scenario, I'm using heavier weights than I might for a straight-out set of 15-18, but I'm still fatiguing the high-threshold slow-twitch muscle fibers.

Obviously, there are as many exercise possibilities as there are walrus bones in the dumpster of an Eskimo diner, but the key is, at least for me, to employ as many of the Poliquin principles as I can in each workout. Rules, of course, are occasionally meant to be broken, and I don't always hold fast to every principle 100% of the time. The key to being successful in this and any endeavor is to be creative. Experiment, but keep the basics in mind. Deciding to use hedge clippers to remove an ingrown toenail certainly falls under the category of creative, but it just isn't going to work that well, is it?

Charles Poliquin on the Five Percent Solution

You may or may not be a mystery reader. Regardless, you've probably heard of the greatest sleuth of all time, Sherlock Holmes. Unfortunately, Holmes had a little habit that, today, would likely have qualified him as a Jeopardy answer in the category, "Guys Who Have Bunked With Dan Duchaine in Prison." You see, Holmes was an opium addict, and he was partial to a very precise mixture which he called the seven percent solution.

Well, I too have my own version of the seven percent solution, only it has nothing to do with illegal opiates. Instead, it has to do with rep schemes. I call it my Five Percent Solution. Let me elaborate.

There are a lot of effective rep schemes, but the fact is, they're only as good as the time it takes you to adapt to them. For beginners, a particular workout, coupled with a particular rep scheme, might guarantee progress for 4 to 6 weeks. After that, they'd be performing the exercise equivalent of getting stuck in a revolving door. Advanced athletes, on the other hand, might have to change their programs every week. Some even have to change their program every single workout!

Although some experts promise a lifetime of continuous results from doing the same routine day after day, ad nauseum, it's a cruel lie. Not only will your body adapt, but you'll probably quit because you'd be bored silly. For instance, one infamous trainer exhibits a fanatical obsession with one training method — his — to the exclusion of all others. His system requires only a fraction of the time required by most other programs, but it's difficult to do it for more than a few weeks because it requires that the trainee be either mentally disturbed or addicted to amphetamines in order to keep up the degree of effort required.

I recommend variety, of course, but there are some set-rep schemes that I tend to favor over others. I like them because they're mentally stimulating and physically challenging. Moreover, I like them because they're effective. One in particular is the aforementioned Five Percent Solution. It's effective regardless of where you are in the bodybuilding hierarchy. You can be a rank beginner, or master of the universe. In short, it gets your heart rate going and your muscles growing.


A Closer Look...
The Five Percent Solution involves a set pattern of progression. In a nutshell, you'll increase the amount of resistance by 4 to 5% each workout, while simultaneously reducing the number of reps by one each time. After you recover from the sixth workout, you'll have increased your strength in each lift by approximately 10%! 

People in the know in the field of strength training realize that the number of reps is the loading parameter to which an individual adapts the fastest, and the Five Percent Solution takes advantage of this fact. I'm sure people like Tony Little have no idea what I'm talking about, but no matter. The Five Percent Solution is based on the principle, "success breeds success".  Whenever people achieve goals, whether it's in business or athletics, testosterone levels rise. When T levels rise, your recovery ability improves. And, because you recover more quickly, you make more gains. Because you have more gains, you have more success and you make more testosterone, and so on and so on. 

Before I give examples of the workout, let's talk about the loading parameters of the Five Percent Solution.

The Intensity Zone

Select a 3-rep bracket to start the cycle. The number of reps should fall between 3 and 8. For instance, choose to do sets of 3-5 reps, 4-6 reps, 5-7 reps, or 6-8 reps. The decision is somewhat arbitrary; just make sure you write down the rep bracket you selected and stick with if for the duration of the program.


Tempo

The tempo (the time it takes you to complete one rep) should be the same throughout the 6 workouts of the phase. Depending on your goal, the total time under tension per set determines the chosen tempo. For example, if mass is your goal, the set should last at least 40 seconds. If relative strength is the desired goal, the total length of the set shouldn't exceed 20 seconds. 

Let's say the rep bracket you selected is 4 to 6 reps and your goal is to build mass. That means that it should take at least 40 seconds to do your 4 to 6 reps. Therefore, a suitable tempo for a set of six might be 412, where 4 is the number of seconds it takes to lower the weight; 1 is the number of seconds you pause; and 2 is the number of seconds it takes to raise the weight. Therefore, each rep would take about 7 seconds and since you'd be doing 6 reps, 6x7 equals 42. That means your total time under tension would be 42 seconds for that particular set.


Rest Interval

In order to allow the phosphagens to replenish and give the central nervous system enough time to recover and be able to activate the high-threshold fibers again, you need to rest 3 to 4 minutes between sets. 

It may be difficult for many of you to take that much rest, but believe me, your discipline will pay big dividends in the long run. In fact, failure to take adequate rest between sets will negate the positive effects of this program. I recommend using a stopwatch that beeps after the rest interval is over. As a note, strength athletes generally rest between 4 and 5 minutes after sets of the Power Clean or other Olympic lifts. The technical element of these lifts is much greater than that of conventional lifts; thus the demands on the nervous system are much greater.


Number of Exercises

I don't recommend doing more than 1 to 2 exercises per body part because you'll be doing a high number of total sets. Of course, the odd genetic freak or the steroid assisted athlete might be able to handle 3 exercises.


Exercise Selection

I recommend that you select compound exercises that recruit a lot of muscle mass. Therefore, exercises like rows, squats, deadlifts, or presses are the best choices for this method. Hopefully, you can use at least 100 pounds in a given exercise because it makes the math easier. It also makes it easier to change the weight since 1 1/4 pound plates are a rarity. Of course if your strength levels are low, you can always use PlateMates or Record Disks to meet the 4 to 5% weight increase.


Frequency

Work every body part once every 4 to 5 days. Here's one possible split:

Day 1: Chest and Back
Day 2: Legs and Abs
Day 3: Off
Day 4: Shoulders and Arms
Day 5: Off


Duration

This program is designed to be used for 6 workouts per body part.

Overload Mechanism

Do your initial workouts with the chosen number of reps and the predetermined weight. You'll then increase the load by 4 to 5% every workout for two workouts in a row. Concurrently, you'll also reduce the target reps by one rep for every weight increase. Then, after the third workout, you'll reduce the weight 4 to 5% but bring the number of reps back to the original starting point. If you've done this correctly, you'll have increased your strength by 5%.

If you're confused, I don't blame you, so let me offer an example:

The Five Percent Solution

Let's say you have a weak brachialis muscle and you want to improve your reverse curl strength. And, for the sake of this example, we'll say your best performance for the reverse curl is 100 pounds for 7 reps. This is what your rep/set cycle would look like:

Workout 1:
4-5 sets x 7 reps at 100 pounds

Workout 2:
Increase the weight from the last workout by 4-5 percent and do 1 rep less per set: 4-5 sets x 6 reps at 105 pounds

Workout 3:
Increase the weight from the last workout by 4-5 percent and do 1 rep less per set: 4-5 sets x 5 reps at 110 pounds

Workout 4:
Use the load you used in workout #2 for the workout #1 rep target. In this case, you're shooting for: 4-5 sets x 7 reps at 105 pounds

NOTE: If you achieve your goal, it means you're already 5% stronger!

Workout 5:
Use the load used in workout #3 for the workout #2 rep target: 4-5 sets x 6 reps at 110 pounds

Workout 6:
Increase the weight from the last workout by 4-5 percent and do 1 rep less per set: 4-5 sets x 5 reps at 115 pounds

By logical extension, if you did workout 7, you'd now be able to do 7 RM (repetitions maximum) with 110 pounds! That's a 10% percent increase in strength over 6 workouts, and that's excellent! (I don't actually map out the seventh workout because it would just be an exercise in vanity-the nervous system typically adapts to any workout program in 6 workouts and after that, it's time to move on to another type of program.)

Obviously, because of neuromuscular fatigue, you won't be able to achieve your rep target every set, but as long as you hit your goal on the first set of every workout, you're doing fine.

The Five Percent Solution Applied to Squats

Biomechanists have determined that when you do a squat, you're in fact squatting 75% of your bodyweight, plus the load on the barbell (Although it seems like you're squatting all of your bodyweight, you're not. After all, the legs are lifting the upper body; they're not lifting themselves off the ground). Keep that in mind when you adjust your squat poundages up by 5%. For instance, let's say you weigh 200 pounds and you're squatting 350 pounds for 5 reps. When increasing the weight five percent from workout to workout, the load increases would look like this:

Weight increase: 5% (load of barbell + (75% x bodyweight))
Weight increase: 5% (350 pounds + (75% x 200 pounds))
Weight increase: 5% (350 pounds + 150 pounds)
Weight increase: 25 pounds

So, in this particular case, a 5% increase would bring our hypothetical 200-pound bodybuilder's load to 375 pounds for his sets of 4 in his next workout.

Tips for the Five Percent Solution

In order to perform this program properly, I strongly urge you to keep a detailed journal of the exact number of sets and reps performed, load used, and rest interval taken. Furthermore, only count the reps done in strict form. Go ahead and do forced reps for the last rep of every third workout, but don't count them as complete reps.

Wrap Up

I hope that the Five Percent Solution isn't too confusing. I think that you'll find it well-worth all the head scratches and furrowed brows it took to figure it out, though. If enough of you find that you like it, let me know and I'll fill you in on the Advanced Five Percent Solution.

In any event, if there's such a thing as one singly unifying theory of training as Mike Mentzer claims, it's that the best system is the one that constantly changes. As your body adapts, its recovery ability increases and higher levels of volume and intensity of training are needed to ensure further growth.

Protein: The Facts, the Myths, and the Real Science

Everyone has an opinion about protein, and the myths surrounding it are rampant. That's why sorting the facts from the crap will lead to better choices regarding your own diet and protein intake. Answer the questions below and see if you've been falling for the myths.

Fact or Myth?

The RDA (Recommended Dietary Allowance) protein suggestions are just fine for people who work out.

Hint: The RDA guideline for protein is 0.8 grams per kilogram of bodyweight per day. So if you weigh 190 pounds (86 kilograms) you'd need about 69 grams of protein.

The Answer: Lifters and athletes concerned with their performance or physique require more protein than what's recommended by the RDA. So it's a myth (and a joke) that the RDA protein recommendations are adequate for ass-kicking individuals.

Here's Why: RDA protein recommendations are too low for certain groups. Those recommendations were never intended for people attempting to enhance performance, maintain, or gain muscle. In fact, a higher protein intake may have positive benefits regarding different health ailments including obesity, type 2 diabetes, osteoporosis, heart disease and muscle wasting.

The RDA guideline reflects the minimum daily needs of protein required to maintain short-term nitrogen balance in healthy, moderately active people. Nitrogen balance compares the amount of nitrogen coming into the body (from dietary protein) to the amount being lost. It's often used as a measurement of protein balance since protein is 16 percent nitrogen.

If you're consuming the same amount of nitrogen that you're losing, you're in nitrogen balance. If you're consuming more than you're losing, you're in positive nitrogen balance. If you're losing more than you're consuming, you're in negative nitrogen balance and are losing protein.

Nitrogen balance studies often involve examining urinary nitrogen levels. Approximately 90 percent of the nitrogen in urine is urea and ammonia salts – the end products of protein metabolism. The remaining nitrogen is accounted for by other nitrogen-containing compounds.

This nitrogen balance method is useful, but it has problems: Urine collections tend to underestimate nitrogen losses, dietary intake tends to be overestimated, miscellaneous skin and hair losses are prone to error, and the response to increased protein intake varies tremendously.

The Really Geeky Stuff

  1. In a review published in the International Journal of Sports Nutrition, researchers concluded, "Those involved in strength training might need to consume as much as 1.6 to 1.7 grams of protein per kilogram per day (approximately twice the current RDA) while those undergoing endurance training might need about 1.2 to 1.6 grams per kilogram per day (approximately 1.5 times the current RDA)."
  2. In another article published in Nutrition & Metabolism, researcher Donald Layman argued that the dietary guidelines should be improved and reflect new understandings about protein requirements. According to him, "During the past decade a growing body of research reveals that dietary protein intakes above the RDA are beneficial in maintaining muscle function and mobility." Diets with increased protein have been shown to improve adult health when it comes to treatment or prevention of obesity, type 2 diabetes, osteoporosis, heart disease and muscle wasting.
  3. A review published in the International Journal of Sport Nutrition and Exercise Metabolism was conducted to evaluate the effects of dietary protein on body composition in energy-restricted resistance-trained athletes, and to provide protein recommendations for these athletes.

The researchers concluded that "...the range of 2.3 to 3.1 grams per kilogram of FFM (fat free mass) is the most consistently protective intake against losses of lean tissue." In other words, for every kilogram on your body that's not fat, you should be consuming 2-3 grams of protein in order to preserve lean tissue. So if you have 190 pounds of lean tissue, up to 258 grams of protein would be optimal for you.

In addition, the goal of the athlete should be considered. Leaner athletes or those having a primary goal of maintaining maximal FFM should aim toward intakes approaching the higher end of this range. Even higher levels of protein than those recommended in the review are not uncommon in exercising individuals. It's unlikely that negative health consequences will follow from higher levels of intake, assuming there are no related health problems that would suggest limiting intake.

Fact or Myth?

The thermic effect of protein is the same as it is for carbs and fat.

Hint: The thermic effect of feeding or diet induced thermogenesis (DIT) is the amount of energy your body has to expend in order to digest and assimilate food. So picture a lean chicken breast (mostly protein), a bowl of rice (mostly carb), and tablespoon of butter (mostly fat). Which do you think your body will have to work hardest to digest?

The Answer: Among the three macronutrients, protein ranks highest in diet induced thermogenesis. So it's a myth that they're all equal in terms of their thermic effect. That means it'll cost you more calories to digest and absorb protein than it would fat and carbohydrate.

Here's Why: The consumption of protein requires an expenditure of 20-30% of the calories derived from protein. So, if 200 calories of protein are eaten, 40-60 calories are burned during digestion. DIT from carbohydrate is 15-20% and 2-5% for fat.

Fact or Myth?

Protein is more satiating (filling) than fat or carbohydrate.

Hints: Protein has an influence on CCK (cholecystokinin) and ghrelin. Protein may stimulate cholecystokinin (CCK) and decrease ghrelin. CCK is secreted mostly from the inner layer of the gastrointestinal tract has been shown to act as a satiety signal. The satiating effect of CCK was first demonstrated when administering CCK to rats. It "dose dependently" reduced meal size. Ghrelin is produced primarily in the stomach and has appetite increasing properties. Ghrelin levels are relatively high prior to a meal and they decrease after a meal.

The Answer: It's a fact that protein is usually more satiating than fat or carbs. When comparing protein, fat, and carbohydrate, protein is generally reported as the most satiating (satisfying to a point of full or beyond) and fat as the least satiating.

Here's Why: Research indicates that one of the primary factors involved with the satiating effects of protein is the thermic effect of feeding, mentioned above. Though protein's influence on ghrelin and CCK may play a large role in its satiating effects, more research needs to be conducted in these areas, as findings have been indecisive. Future research should concentrate on different levels of protein, different types of protein, and consumption of proteins in short and long term.

The Really Geeky Stuff

  1. A review published in Nutrition & Metabolism reported that protein induced thermogenesis has an important effect on satiety. "Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis."
  2. A study published in Physiology & Behavior investigated the relative satiating effect of the macronutrients in lean women. On four separate occasions, the composition of an iso-caloric lunch "preload" was controlled in 12 lean women. Macronutrient composition had a significant effect on short-term hunger – the women were less hungry after the protein preload compared to the preloads with the other macronutrients. They also ate less after the protein preload.
  3. A study published in the American Journal of Clinical Nutrition tested the prediction that increasing protein while maintaining the carb content of a diet lowers body weight due to decreased appetite and decreased calorie intake. The study showed when increasing the protein intake from 15% of diet to 30% of diet (while eating the same amount of carbs) there was a decrease in appetite and fewer calories were consumed.
  4. The Journal of Clinical Endocrinology & Metabolism published a study that compared the effect of different proteins and carbohydrates on indicators of appetite and appetite regulatory hormones. CCK level was one of the primary outcomes measured.

Calorie intake was higher after the glucose preload compared with lactose and protein preloads. CCK level was higher 90 minutes after the protein preloads compared with glucose and lactose level. Researchers concluded that "acute appetite and energy intake are equally reduced after consumption of lactose, casein, or whey compared with glucose."

One Quick Caveat

The research sometimes gets a little messy. For example, some studies are indecisive when it comes to protein intake and ghrelin levels. This is why you need to rely on your own reasoning, logic, and experience while gathering info from the research.

References

  1. Blom, A.M., Lluch, A., Stafleu, A., Vinoy, S., Holst, J., Schaafsma, G., & Hendriks, H. (2006). Effect of high-protein breakfast ont he postprandial ghrelin response. The American Journal of Clinical Nutrition, 83(2), 211-220.
  2. Bowen, J., Noakes, M., Trenerry, C., & Clifton, P.M. (2006).Energy intake, Ghrelin, and Cholecystokinin after Different Carbohydrate and Protein Preloads in Overweight Men. The Journal of Clinical Endocrinology & Metabolism, 91(4).
  3. Helms, E., Zinn, C., Rowlands, D.S., & Brown, S.R. (2014). A Systematic Review of Dietary Protein During Caloric Restriction in Resistance Trained Lean Athletes: A Case for Higher Intakes. International Journal of Sport Nutrition and Exercise Metabolism, 24, 127-138.
  4. Layman, D.K.(2009). Dietary Guidelines should reflect new understandings about adult protein needs. Nutrition & Metabolism, 6(12), Lemon, P. (1998). Effects of exercise on dietary protein requirements. International Journal of Sports Nutrition, 8(4), 426-447.
  5. Lucas, M, & Heiss C.J.(2005) Protein needs of older adults engaged in resistance training: A review. Journal of Aging and Physical Activity, 13(2), 223-236.
  6. Moran, L.J., Luscombe-Marsh, N.D., Noakes, M., Wittert, G.A., Keogh, J.B., & Clifton, P.M. (2005). The Satiating Effect of Dietary Protein Is Unrelated to Postprandial Ghrelin. The Journal of Clinical Endocrinology & Metabolsim, 90(9).
  7. Poppitt, S.D., McCormack, D., & Buffenstein, R. (1998).Short-term effects of macronutrient preloads on appetite and energy intake in lean women. Physiology & Behavior, 64(3), 279-285.
  8. Weigle, D.S., Breen, P.A., Matthys, C.C., Callahan, H.S., Meeuws, K.E., Burden, V.R., & Purnell, J.Q. (2005). A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. The American Journal of Clinical Nutrition, 82(1), 41-48.
  9. Westerterp, K.R. (2004). Diet induced thermogenesis. Nutrition & Metabolism, 1, 1-5

Resistance Training’s Effect on Endurance Performance

Research shows that the appropriate integration of resistance training into the endurance athlete’s training can result in significantly better performance when compared to classic endurance training plans that focus only on aerobic endurance  .

Research shows that the appropriate integration of resistance training into the endurance athlete’s training can result in significantly better performance when compared to classic endurance training plans that focus only on aerobic endurance.

The following is an exclusive excerpt from the book Developing Speedpart of the NSCA’s Science of Strength and Conditioning Series with Human Kinetics.

Endurance athletes who are stronger can generally perform at a much higher level.

This suggests that training modalities that stimulate increases in muscular strength without compromising endurance capacity may be beneficial for the endurance athlete. Support for this contention can be found in the scientific literature; research shows that the appropriate integration of resistance training into the endurance athlete’s training plan can result in significantly better performance when compared to classic endurance training plans that focus only on aerobic endurance training.

When looking closely at endurance performance, several key factors—including the athlete’s maximal aerobic power (V˙ O2max), lactate threshold, and movement efficiency—contribute to performance (see figure 7.1). The training modality selected influences these factors by inducing changes to the athlete’s aerobic power and capacity, anaerobic capabilities, and neuromuscular function.

Aerobic training exerts a strong influence on both aerobic power and capacity, but it does not exert a great impact on the athlete’s anaerobic or neuromuscular abilities.

Conversely, resistance training exerts a strong influence on the athlete’s neuromuscular function and a moderate influence on anaerobic power and capacity, while offering only a minimal influence on aerobic power and capacity. By influencing the athlete’s anaerobic abilities as well as neuromuscular function, resistance training can elevate the athlete’s lactate threshold, movement efficiency, and ability to engage in high-intensity activities.

The ability of resistance training to improve endurance performance is likely related to several key factors, including the specific physiological and mechanical adaptations that are stimulated by the resistance training regimen. The integration of resistance training into the overall training plan appears to be central to creating these specific performance-enhancing adaptations.

Traditionally, endurance athletes and coaches have believed that resistance training either does not affect or negatively affects endurance performance. However, this view may be partially explained by a design flaw in many of the training programs that include both resistance and endurance training. The flaw is that resistance training is simply added to the endurance training plan. Athletes who undertake this approach often experience excessively high levels of fatigue that can negatively affect overall performance.

If athletes reduce their endurance training load to account for the addition of resistance training, then resistance training has a positive effect on the athletes’ endurance performance. The athlete who performs both resistance and endurance training in an integrated and appropriately planned fashion will perform at a higher level than the athlete who performs only classic endurance training.

The Core. What is it? And why should you care?

Core exercises are an important part of any strength training program, especially for those just starting out. Many people think that the occasional crunch will be enough to solve any issues they have when it comes to a lack of core strength, however this approached leaves many muscles of the core neglected. Let’s find out why…

What is the Core?

The core is often thought of as just the abs, which makes it understandable as to why sit-ups are seen as the go-to exercise. Unfortunately, it is not that simply. Think about the core as a muscular box where the abdominals make up the front, the paraspinals and gluteals sure up the back, the diaphragm as the roof, and the pelvic floor and hip girdle musculature as the floor.

This intricate construction can be understood simply as the body’s foundation for movement. It is the central region providing a girdle of strength and connecting the abdomen with the lower back and hips. These muscles, together with the spinal muscles, create a stable base for generating strength and providing support for all movement.

Core Anatomy:

  • Abdominals – the abdomen is a group consisting of four muscles: The rectus abdominis, also known as the “six-pack” is a superficial muscle sitting on the outermost layer of the core and is mainly involved in flexion. The transversus abdominis, which rests under the rectus abdominis, wraps around the core holding it together like a girdle and works to maintain good posture. Often times the in people with lower back pain the transversus abdominis is very weak. The internal obliques are deep muscles that help the body to rotate and flex to the side. The external obliques are another superficial musculature of the core just above the internal obliques which are important for rotational movements and side flexion.
  • Paraspinals – made up of two major groups of lumbar extensors: the erector spinae and the “local” muscles (multifidus, rotatores, and intertransveri). The erector spinae is a group of three long tendinous muscles that run the entire length of the spine which provide support for spinal flexion (bending forward), extension (bending backwards) and aid in stabilizing the spine against lateral movement. The “local” muscles, mainly the multifidus is set deep and attached to the spine so that they may work to keep the spine straight and help stabilize through maintaining good posture.
  • Hip Girdle & Gluteal Musculature – playing an important role within ambulatory activities such as stabilization of the trunk and pelvis and by transferring force from the legs to the pelvis and spine. The hip musculature consists of the psoas muscle group and the gluteus muscle group. The psoas, also referred to as the hip flexors, control flexion movements at the hip such as walking, running and climbing stairs. And for the gluteal musculature is made up of three muscles: the smallest being gluteus minimus, which lies beneath the gluteus medius, and works to lift the leg outward (abduction) as well as to internally rotate the hip. The gluteus medius sits just above the minimus, it assists with abduction, rotation (both internal and external) and provides stability to the pelvic region. The gluteus maximus is the largest of the three, it works to abduct and extend the hips in addition to stabilizing the pelvic region.
  • Diaphragm & Pelvic Floor – The diaphragm serves as the roof of the core by providing stability to the lumbar spine via contraction during breathing. The pelvic floor musculature is coactivated with any transversus abdominis contraction and assists in stabilizing during movement.
  • Quadratus Lumborum – A large, thin, quadrangular-shaped muscles that directly inserts into the lumbar spine. The quadratus lumborum works to stabilize the spine against lateral movement, lifting heavy objects and carrying items in one hand.

Why should we care about strengthening the core?

Strengthening the core musculature fights structural imbalances leading to such discomforts as low back pain which is one of the major forms of musculoskeletal degeneration in the adult population, affecting upwards of 80% of all adults. Research has shown that lower back pain is predominant among those who work at a desk, as sitting for long of time in a chair can cause the important muscles of the core to atrophy. Therefore, developing strength within this musculature is essential for maintaining a healthy posture, and leading a pain-free life.

What is an example of a core strengthening exercise?

Sliding Rollout from Knees

  1. Assume a kneeling position. Place both hands out in front of you on something that can move freely. An ab wheel, a Swiss ball, floor sliding discs or small hand towels will work. Think about squeezing all those muscles we just learned about and keep the head and neck in a neutral position.
  2. Lower your body under control by extending the hips and flexing the arms until your body approaches the floor. Keep the core and especially the gluteals contracted forcefully.
  3. Rise back to the starting position.

*The rollout is one of the best core strengthening exercises for beginners. If you use proper form and keep the core contracted, preventing the pelvis from rotating forward, your lower abdominals will receive even more of a workout. Break into this exercise gradually and make sure you keep the body in a straight line at the bottom of the movement. Many people sag at the hips or allow too much anterior pelvic tilt during the rollout exercise.


Just remember, core exercises should be seen as ones that not only help your “six-pack” but strengthen your lower back and pelvis. Having all these work together in harmony leads to better balance and stability, whether you’re on the field playing or completing daily activities.